روش های نقطه تقریبی برای کلاس های توابع محدب و غیر محدب روی خمینه های هادامار

thesis
abstract

در این پایان نامه روش نقطه تقریبی را برای کلاس خاصی از توابع غیر محدب، روی خمینه های هادامار بررسی می کنیم. دنباله ی تولید شده توسط این روش، خوش تعریف است. به علاوه ثابت می کنیم که هر نقطه ی انباشتگی از این دنباله، در شرایط بهینگی صدق می کند و تحت شروطی روی این دنباله، همگرایی آن برای یک می نیمم کننده بدست می آید. هم چنین روش نقطه تقریبی را با استفاده از فاصله ی برگمن برای حل مسائل بهینه سازی محدب و شبه محدب، روی خمینه های هادامار تعمیم می دهیم. در این حالت نیزدنباله ی تولید شده خوش تعریف است و همگرا به یک جواب بهین از مسئله می باشد. در ادامه ویژگی های همگرایی را برای روش تقریبی کلاسیک که قابل استفاده برای مسائل شبه محدب است، بدست می آوریم. ودرنهایت، چندین مثال از فواصل برگمن، در فضاهای نااقلیدسی، ارائه می دهیم .

similar resources

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

full text

کرانداری همانی های تقریبی در جبرهای موضعاً محدب ضربی

برای اثـبات قضیه معـروف تجزیه کهـن، حتی در جــبرهای باناخ، داشتـــــن همانی تـقـــریبی کراندار ازاهمیت ویژه ای برخوردار است. درتعمیم قضیه کهن به جبرهای توپولوژیکی، نه تنها وجود یک همانی تقریبی کراندار کماکـــان مورد نیاز است. بلکه برای اثـــــــبات قضیه، کرانداری قویــتری نیز اعمال شده است . دراین مقالـــه ضمن مطالعه یک مسئله باز معروف نسبتا قدیمی، در مورد همانی های تقریبی کرانداری یکنواخت، در ...

full text

توابع تقریبا" محدب روی گروه های توپولوژیک

در این پایان نامه توابع تقریبا" محدب را روی گروههای توپولوژیک مطالعه خواهیم کرد. همچنین قضایای ینسن، برنشتاین - دوچ، استروفسکی ، بلومبرگ - سیرپنسکی و مهدی را روی توابع تقریبا" محدب مبانی در فضاهای برداری توپولوژیک به توابع تقریبا" محدب مبانی در گروههای توپولوژیک تعمیم خواهیم داد. در نهایت ، توابع تقریبا" -wright محدب را در گروههای توپولوژیک تعریف کرده و قضیه ای را در مورد آن اثبات می کنیم.

15 صفحه اول

برنامه ریزی درجه دوم محدب تعمیم یافته برای حل دستگاه های خطی فازی

دستگاه معادلات خطی، یکی از مهمترین ابزارهای مدلسازی پدیده های دنیای واقعی است. اما از آنجاییکه پدیده های دنیای واقعی همواره با عدم قطعیت همراه هستند، لذا حل دستگاه معادلات خطی فازی از اهمیت بسزایی برخوردار می‌شود. یکی از روش های متداول و پر کاربرد برای یافتن جواب‌های دقیق و تقریبی یک دستگاه معادلات خطی فازی، استفاده از روش کمترین مربعات است. در این روش، با انتخاب یک متر دلخواه و حل یک مساله برن...

full text

الگوریتم نقطه مبدأیی برای مسائل غیر محدب روی منیفلدهای هادامارد

در این پایان نامه، الگوریتم نقطه مبدأیی را برای حل مسائل مینیمم سازی ای روی منیفلد های هادامارد توسیع می دهیم که توابع هدف آن ها دارای شرایط خاصی از جمله نا محدب، موضعا لیپ شیتز و یا شبه محدب می باشند. برای رسیدن به این هدف از مفهوم زیر دیفرانسیل ها روی منیفلد های هادامارد استفاده می کنیم و در هر حالت فرض هایی اضافه برای تابع هدف در نظر می گیریم. بعلاوه, ثابت می کنیم که دنباله تولید شده توسط ال...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023